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Abstract

The continuous improvement concepts such as total quality management, just-in-time and total productive maintenance
have been widely recognized as a strategic weapon and successfully implemented in many organizations. In this paper, we
focus on the application of total productive maintenance (TPM). A random e3ect non-linear regression model called the Time
Constant Model was used to formulate a prediction model for the learning rate in terms of company size, sales, ISO 9000
certi6cation and TPM award year. A two-stage analysis was employed to estimate the parameters. Using the approach of this
study, one can determine the appropriate time for checking the performance of implementing total productive maintenance.
By comparing the expected overall equipment e3ectiveness (OEE), one can improve the maintenance policy and monitor the
progress of OEE. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many systems in practice today do not perform as in-
tended, nor are they cost e3ective in terms of their operation
and support. Manufacturing systems, in particular, often op-
erate at less than full capacity. Consequently, productivity
is low and the cost of producing products is high. In deal-
ing with the aspect of cost, experience has indicated that a
large percentage of the total cost of doing business is due to
maintenance-related activities in the factory (i.e., the costs
associated with maintenance, labor and materials and the
cost due to production losses). Further, these costs are likely
to increase even more in the future with the added complex-
ities of factory equipment through the introduction of new
technologies, automation, the use of robots, and so on. In
response to maintenance and support problems in the typ-
ical factory environment the Japanese in 1971, introduced
the concept of total productive maintenance (TPM), an
integrated life cycle approach to factory maintenance and
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support. Since then, TPM methods and techniques have been
successfully implemented in Japan, and later on in some
other advanced and advancing countries in the world. Inher-
ent within the TPM concept are the aspects of enhancing the
overall e3ectiveness of factory equipment, and providing an
optimal group organizational approach in the accomplish-
ment of system maintenance activities. Both the equipment
and the organizational sides of the spectrum need to be ad-
dressed in ful6lling the objectives of TPM. It is believed that
while many successes have been realized in structuring or-
ganizations to respond better to the maintenance challenge,
very little progress has been made in relation to the predic-
tion of total equipment utilization while implementing TPM.
In this paper, we focus on the application of TPM. A ran-
dom e3ect non-linear regression model called the Time Con-
stant Model [1] was used to formulate a prediction model
for the learning rate in terms of company size, sales, ISO
9000 certi6cation and TPM award year. A two-stage analy-
sis was employed to estimate the parameters. Using the ap-
proach of this study, one can determine the appropriate time
for checking the performance of implementing total produc-
tive maintenance. By comparing the expected overall equip-
ment e3ectiveness (OEE) one can improve the maintenance
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policy and monitor the progress of OEE. The literature re-
view on learning curves and TPM studies is presented in
the following section. The learning curve analysis in TPM
is discussed in Section 3, followed by some examples to
demonstrate the application of the proposed methodology.
The conclusions are made in the 6nal section.

2. Literature review

Learning curves have been extensively studied, starting
with Wright in 1936, and have been applied in practice [2].
It has been observed that every time the cumulative produc-
tion volume doubles, the marginal cost diminishes by a 6xed
proportion (i.e., one minus the so-called learning rate). In
that sense, the learning curve function is a power function
with respect to the cumulative production volume. Learn-
ing rates are often similar to the same line of products [3].
However, Argote and Epple [4] report that organizations
vary considerably in their learning rates for manufacturing
the same products.

Muth [5] provides a survey of the theories that attempt to
explain the learning curve phenomenon and propose a theory
based on a random search within a 6xed population of tech-
nological possibilities. Adler and Clark [6] propose a learn-
ing process model that relates the productivity improvement
in an electric equipment company to 6rst-order learning (cu-
mulative output) and second-order learning (i.e., engineer-
ing changes and work force learning). Zangwill and Kantor
[7] propose a model for continuous improvement activities
and relate it to three forms of learning curves.

Few researchers have discussed the application of the
learning curves in product quality and process improvement.
Schneiderman [8] provides the times to halve the defect rates
for many processes using a learning curve model that relates
the logarithms of defect level to time. The paper reports the
importance of identifying and setting targets for managing
improvement activities. Comptom et al. [9] propose three
learning models related to quality—the power form, the ex-
ponential form, and the linear form. In these, a measure of
quality improvement (or quality index) is expressed as a
function of cumulative volume.

For comprehensive surveys of the learning curve
models, the reader is referred to Yelle [2], Hacket [10],
Towill [11], and Badiru [12]. However, all papers men-
tioned in these studies address improvement measured by
means of either productivity or product quality. In this
paper, we address learning by means of overall equipment
e3ectiveness (OEE).

Total productive maintenance, proposed by Seiichi Naka-
jima, has been widely applied for its bene6ts to the main-
tenance deliver system since 1971 [13]. The word “total”
in total productive maintenance has three meanings that
describe the principal features of TPM:
(1) Total e3ectiveness (including productivity, cost, quality

delivery, safety, environment and health, morale).

(2) Total maintenance system (including maintenance pre-
vention (MP), maintainability improvement (MI)).

(3) Total participation of all employees.
Thus, the goal of TPM is to increase the productivity of
plant and equipment through company-led small group
activities and autonomous maintenance by operators. To
maximize output, the most eMcient way is to eliminate
causes, the so-called six big losses in TPM that reduce
equipment e3ectiveness. (Six losses are: (1) reduced
yield—from start up to stable production, (2) process de-
fects, (3) reduced speed, (4) idling and minor stoppages,
(5) set-up and adjustment, and (6) equipment failure.)

In the evaluation of a maintenance performance, OEE is
used as a metric to evaluate the manufacturing capability.
OEE is a function of equipment availability, performance
eMciency, and quality. That is,

OEE = (availability) × (performance eMciency)

(quality rate);

where

availability =
loading time − downtime

loading time
performance eMciency

= operating speed rate × net operating rate

=
theoretical cycle time

actual cycle time

×process amount × actual cycle time
operating time

=
theoretical cycle time × process amount

operating time

quality rate =
processed amount − defect amount

processed amount
:

An 85% OEE is considered as being world class and a
benchmark to be established for a typical manufacturing
capability. In practice, achieving an 85% OEE and obtain-
ing a prize-winning award are objectives of 6rms when
implementing TPM. Typically, it takes an average of three
and a half years from introduction of TPM to achieve
prize-winning results.

Several books and articles have presented TPM improve-
ment activities in plants and, based on case studies, sug-
gested the implementation procedures [14–19]. However,
both Enkawa [20] and Miyake and Enkawa [21] develop
in-depth systematized comparisons under the perspective of
analyzing mutual complementary between total quality con-
trol (TQC) and TPM.

McKone et al. [22] propose a theoretical framework by
testing how the contextual issues a3ect 6rms’ maintenance
systems when implementing TPM. Their studies show
that the proposed three contexts—environmental context
(country, industry), organizational context (equipment age,
equipment type, company size, plant age, unionization),
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and managerial context (just-in-time, total quality manage-
ment, employee involvement)—do inRuence the 6rms’ TPM
adoptions at di3erent levels. Our study followed the step of
McKone et al., however, by empirically studying how some
of contextual issues a3ect 6rms’ maintenance performance
in terms of OEE. That is, the e3ects of some contextual
issues, such as total quality management, country, and
company size, will be tested against the 6rms’ maintenance
performance in terms of OEE.

3. The learning curve analysis in TPM

A random e3ect learning curve analysis is used to develop
a prediction model for monitoring the improvement of im-
plementing TPM, such as the value of OEE. The analysis of
a random e3ect learning model has been extensively used
in biomedical research [23–25]. In general, the goal of the
learning curve analysis is to estimate learning rates of a prin-
cipal attribute in terms of concurrent characteristics that do
not change over the experimental period. Using a two-stage
model typically carries out the growth curve analysis. The
6rst stage consists of the within-individual non-linear regres-
sion model in which the learning rates for the serial obser-
vations are estimated for all individuals. The second stage
consists of a between-individual model in which the esti-
mates of the learning rates are related to a set of covariates.
The Time Constant learning curve model has been found
to be a good descriptor of many industrial performance im-
provement situations [1]. Here, the within-individual model
for the learning curve in TPM is given as follows:

Y (t) = Yc + Yf(1 − e−(t=�)+	); (1)

where Y (t) is the OEE (%) at time t, Yc the initial level
of OEE (%), Yf=Yc the dynamic gain of OEE (%), � the
time constant (months) (a measure of how long it takes to
achieve growth in performance) and 	 the homoscedastical,
serially non-correlated error term ∼ N (0; �2).

The initial level of OEE (%), Yc, the parameter of Yf,
and the time constant, �, may be varied depending mostly on
associated company culture and the types of manufacturing
products. In addition, some variations of the learning index
cannot be explained by these characteristics. The model, in
which the rate of improvement, �, was considered as a func-
tion of the random error, is called the between-individual
model and given as follows:

�= �0 + �1x1 + �2x2 + · · · + �mxm + �; (2)

where xi can be the size of company, sales, certi6ed as ISO
9000 or not, and the number of years from starting the TPM
program to winning the TPM award, etc.

In order to estimate the parameters in Eqs. (1) and (2),
a two-stage procedure is used in this study. At the 6rst
stage the learning index in the within-individual model is
estimated using a non-linear regression method. A method
widely used in computer algorithms for non-linear regres-
sion is linearization of the non-linear function followed by

the Gauss-Newton iteration method of parameter estimation
[26]. Linearization is accomplished by a Taylor series expan-
sion of f(ti ; �) about the point �T

0 = [�10; �20] = [Yc0; Yf0; �0]
with only the linear terms retained. This yields

f(ti ; �) =f(ti ; �0) +
3∑
j=1

[
@f(ti ; �)
@�j

]
�=�0

(�j − �j0): (3)

We may rewrite the above equation as follows:

y0 = Z0x0 + 	; (4)

where

y0 = f(ti ; �) − f(ti ; �0);

Z0 =

[[
@f(ti ; �)
@�1

]
�=�0

;
[
@f(ti ; �)
@�2

]
�=�0

;
[
@f(ti ; �)
@�3

]
�=�0

]
;

x0 =




(�1 − �10)

(�2 − �20)

(�3 − �30)


 :

That is, we now have a linear regression model. Therefore,
the least-squares method for the estimates of x0 is given by

x̂0 = (ZT
0 Z0)

−1ZT
0 y0: (5)

Now since x0 = �−�0, we could de6ne �̂1 = x̂0+�0 as revised
estimates of �. We may replace the revised estimates �̂1 in
Eq. (4) and then produce another set of revised estimates,
say �̂2 or �̂3, and so forth. This iteration continues until
convergence is obtained, that is, until the increment is so
small that there is no useful change in the elements of the
parameter vector. When the procedure converges to a 6nal
vector of estimates, say �̂, we can compute a residual mean
square,

S2 =

∑n
i=1 [yi − f(ti ; �̂)]2

n− 2
;

as an estimate of �2. The estimate of the asympotic covari-
ance matrix of �̂ is given as follows:

V (�̂) = S2(ZTZ)−1; (6)

where Z is the matrix of partial derivatives de6ned
previously, evaluated at the 6nal-iteration least-squares
estimate �̂.

At the second stage the unobservable parameter, �, in the
between-individual model is replaced with the estimated pa-
rameter, �̂. This replacement, however, introduces the esti-
mation error �, and Eq. (2) becomes

�̂= �0 + �1x1 + �2x2 + · · · + �mxm + 	 + �; (7)

where � is statistically independent of 	 and is asympto-
tically normally distributed. Furthermore, we assume that
E(�) = 0; V (�) = �2

� . Then, we can obtain that �̂ ∼ N (�0 +
�1x1 + · · ·+ �mxm; �2 + �2

�). Finally, by replacing the �’s in
Eq. (7) with the estimates �’s, �̂ can be predicted in terms
of x1; K; xm as
ˆ̂�= �̂0 + �̂1x1 + · · · + �̂mxm: (8)
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The estimate �̂ is based on the actual learning rate of the
implementing TPM, while ˆ̂� is based on the group character-
istic such as the type of company and culture. Furthermore,
the parameters of Yc and Yf can be obtained as in the above
discussion.

In order to predict the OEE after implementing TPM at a
future time t, one can use the following model:

Ŷ (t) = ˆ̂Y c + ˆ̂Yf(1 − e−t=
ˆ̂�); (9)

where the estimation of the parameters, Yc and Yf, is similar
to that of the parameter ˆ̂�. In addition, one can estimate the
expected time t when the OEE reaches a predetermined level
(100-Y ) using

t̂Y = ˆ̂� ln

(
1 − Ŷ (t) − ˆ̂Y c

ˆ̂Yf

)
: (10)

4. Illustrated examples

In order to illustrate the method suggested in this pa-
per, several examples are presented using the TPM award
data in Taiwan and Japan. Table 1 contains information
regarding the series of the OEE found in 32 companies.
The goals are to 6nd the relationship between non-overall
equipment e3ectiveness and concurrent characteristics of the
company (company size, quality management and the types
of manufacturing products, etc.). Then we can determine
whether TPM was implemented in any company, to predict
the learning rate in terms of concurrent characteristics of the
company and to predict the OEE at a given time.

First, the estimation of the parameters in the within-
individual model was obtained using non-linear Fit from
JMP software [27]. The resulting Ŷ ci’s, Ŷ fi’s and �̂i’s with
their corresponding company characteristics are summa-
rized in Table 2.

Example 1. With respect to the estimated parameters, we
want to see whether there exist di3erence between compa-
nies in Taiwan and those in Japan. The summarized statis-
tics of the estimated parameters from these two groups of
companies are shown as follows:

Parameter Taiwan, n1 = 6 Japan, n2 = 26

Yf=Yc Ux1 = 0:791 Ux2 = 0:817
s21 = 0:372 s22 = 0:236

� Ux1 = 38:789 Ux2 = 47:943
s21 = 338:604 s22 = 285:592

Since we have the p-value= 0:125 for the testing of the
mean of the parameter Yf=Yc, we cannot reject the null
hypothesis H0: �1 = �2 at the 95% con6dence level. That
is, there is no strong evidence indicating that the mean of
estimated dynamic gain from the companies in Taiwan is
di3erent from the mean of those in Japan. Since Taiwanese

companies have adopted TPM programs and their philoso-
phies from Japan, it is not surprising to 6nd that the mean of
OEE’s learning indices from these two groups are not di3er-
ent. Also, since we have the p-value= 0:455 for the testing
of the mean of the parameter �, we cannot reject the null
hypothesis H0: �1 = �2 at the 95% con6dence level. That is,
the mean of estimated time constant from the companies in
Taiwan is not di3erent from the mean of those in Japan.

Example 2. With respect to the estimated parameters, we
want to see whether there exists a di3erence between the
companies of large size and the companies of small size.
Here we de6ne a 6rm with more than 500 employees as
large sized, otherwise, small sized. The summarized statis-
tics of the estimated learning index from these two types of
companies are shown as follows:

Parameter Large size companies, Small size companies,
n1 = 16 n2 = 16

Yf=Yc Ux1 = 0:746 Ux2 = 0:926
s21 = 0:215 s22 = 0:301

� Ux1 = 41:119 Ux2 = 51:338
s21 = 328:569 s22 = 231:772

Since we have the p-value= 0:162, we cannot reject the
null hypothesis H0: �1 = �2 at the 95% con6dence level.
That is, there is no strong evidence indicating that the mean
of estimated dynamic gain from the larger companies is
di3erent from that of the small companies. These results
also show that small plants as well as large plants can
implement TPM and have the same maintenance perfor-
mance. Further, it also implies that the state of the orga-
nization’s resources may not limit a company’s ability to
implement TPM. Also, since we have the p-value= 0:047
for the testing of the mean of the parameter �, we can re-
ject the null hypothesis H0: �1 = �2 at the 95% con6dence
level. That is, the mean of estimated time constant from the
larger companies is di3erent from the mean of these small
companies.

Example 3. With respect to the estimated parameters, we
want to see whether there exists a di3erence between the
companies that are ISO 9000 certi6ed and those that are not
ISO 9000 certi6ed. The summarized statistics of the esti-
mated learning indices from these two types of companies
are shown as follows:

Parameter ISO 9000 Non-ISO 9000
certi6cation, n1 = 16 certi6cation, n2 = 16

Yf=Yc Ux1 = 0:997 Ux2 = 0:603

s21 = 0:342 s22 = 0:076

� Ux1 = 46:243 Ux2 = 46:213

s21 = 281:279 s22 = 338:575
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Table 1
The overall equipment e3ectiveness (%) observed in 32 companies

#1 #2 #3 #4 #5 #6 #7 #8

Month OEE Month OEE Month OEE Month OEE Month OEE Month OEE Month OEE Month OEE
0 57.6 0 55 0 65.6 0 65.9 0 47.0 0 70.2 0 45.3 0 53.0
6 63.1 6 66 6 71.4 6 72.0 6 52.0 6 74.9 3 51.6 6 59.0

12 68.2 12 71 12 75.4 12 75.0 12 63.0 12 78.3 6 61.0 12 64.0
18 72.0 18 77 18 78.8 18 78.0 18 66.0 18 81.7 9 65.4 18 69.0
24 77.7 24 82 24 81.3 24 81.0 24 70.0 24 84.2 12 73.9 24 73.0
30 80.6 30 86 30 84.3 30 82.0 28 78.6 30 86.4 15 76.5 30 77.0
36 82.8 36 88.0 36 85.0 29 78.7 36 87.3 17 77.4 36 81.0
42 84.2 42 87.3 30 78.5 22 80.8 42 84.0
48 85.0 31 77.8
54 85.6 32 78.0
60 85.7
66 86.3

#9 #10 #11 #12 #13 #14 #15 #16

0 42.0 0 69.0 0 59.0 0 56.0 0 69.3 0 59.0 0 57.0 0 46.7
6 48.0 6 75.0 3 64.0 12 61.0 6 72.5 6 65.0 6 63.0 6 47.6

12 54.0 12 80.0 6 68.0 24 65.0 12 76.5 12 70.0 12 68.0 12 46.2
18 60.0 18 84.0 9 71.0 36 77.0 18 79.2 18 74.0 18 72.0 18 53.8
24 64.0 22 87.0 12 73.0 48 79.0 24 81.0 24 77.0 24 76.0 24 57.4
30 68.0 23 87.0 15 75.0 60 81.0 30 84.2 30 80.0 30 80.0 30 58.2
36 72.0 24 88.0 18 78.0 72 83.0 36 85.9 36 85.0 36 83.0 36 60.8
42 77.0 21 81.0 84 85.0 42 86.0 42 66.6

24 83.0 96 86.0 48 60.0
27 85.0 108 87.0 54 74.7
30 86.0 60 77.5

66 83.3
72 85.5
78 85.8

#17 #18 #19 #20 #21 #22 #23 #24

0 52.0 0 74.9 0 72.0 0 37.4 0 63.1 0 43.2 0 62.0 0 77.1
3 55.6 6 78.0 3 73.2 9 50.5 6 69.5 6 50.0 6 67.0 12 81.0
6 58.7 18 82.0 6 74.3 21 62.0 12 74.5 12 56.2 12 71.0 24 86.2
9 61.7 22 82.5 9 75.3 33 72.0 18 78.0 18 62.6 18 74.0 36 87.6

12 64.4 24 82.8 12 76.3 40 77.5 24 80.0 24 67.7 24 77.0
15 67.0 26 84.0 15 77.3 45 81.9 30 81.5 30 72.0 30 80.0
18 69.5 18 78.2 36 82.5 36 76.1 36 83.0
21 72.0 21 79.1 42 78.1 37 83.5
24 74.0 24 79.9 38 84.0
27 76.0 27 80.7 39 84.5
30 78.0 28 81.0 40 85.0
33 80.0 29 81.3
35 82.0 30 81.6

31 81.8
32 82.0
33 82.2

#25 #26 #27 #28 #29 #30 #31 #32

0 68.0 0 73.9 0 60.0 0 56.6 0 59 0 62.0 0 68.7 0 40.0
6 73.2 6 78.0 6 67.0 6 63.5 12 71 6 67.0 6 72.2 6 47.0

12 77.7 12 81.8 12 72.0 12 69.8 24 79 12 71.0 12 75.5 12 53.0
18 81.7 18 85.3 18 76.0 18 74.9 36 85 18 74.5 18 78.8 18 58.5
24 85.2 24 88.3 24 79.5 24 79.5 24 77.7 22 80.4 24 63.5
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Table 1 (continued)

#25 #26 #27 #28 #29 #30 #31 #32

30 88.8 30 90.8 30 82.5 25 81.0 30 80.0 23 81.3 30 68.0
36 90.4 31 91.2 36 85.4 26 82.0 36 82.0 24 81.8 36 72.0
42 92.0 32 91.6 27 82.8 37 83.0 25 82.3 42 76.0

33 92.0 28 83.4 38 83.4 26 81.8 48 79.2
34 92.3 39 83.5 27 82.4

28 83.0
29 83.5
30 83.9
31 84.2
32 84.4

Table 2
The estimation of the parameters with the company information

Company Ŷ c Ŷ f �̂ Employees Sales ISO- Award- Country
no. 9000- year

certi6cation

1 56.6 32.7 24.66 542 228.30 0 3 Taiwan
2 55.6 44.6 26.65 778 168.00 1 2.92 Taiwan
3 66.0 39.5 46.62 2036 648.00 1 3.92 Taiwan
4 66.5 28.8 34.92 662 160.00 1 2.92 Taiwan
5 46.5 92.7 72.55 450 152.00 1 5.17 Taiwan
6 70.1 23.9 27.39 617 180.00 1 3 Taiwan
7 44.2 47.0 13.67 164 2124.00 1 3 Japan
8 53.1 64.9 64.72 1065 717.00 1 4 Japan
9 42.0 18.0 72.28 71 350.00 0 3.16 Japan

10 69.0 39.7 37.40 132 24.90 1 2.83 Japan
11 59.7 43.3 31.54 313 124.00 0 2.83 Japan
12 54.4 37.2 48.87 404 116.00 0 3.83 Japan
13 69.2 33.5 52.00 328 315.00 1 3 Japan
14 59.4 51.8 55.45 193 29.80 0 3 Japan
15 57.2 53.6 54.62 474 107.00 0 3.17 Japan
16 47.5 55.8 68.01 523 360.00 0 4.83 Japan
17 52.2 63.1 56.33 1344 845.20 1 3 Japan
18 75.0 12.4 22.12 846 160.00 0 2.5 Japan
19 72.0 26.9 69.00 201 92.10 0 2.92 Japan
20 38.0 86.1 65.04 275 105.00 1 5.16 Japan
21 63.0 22.0 16.18 644 311.00 0 3.08 Japan
22 48.8 58.1 43.54 169 25.00 1 3.5 Japan
23 62.4 50.6 68.42 353 100.00 0 4.2 Japan
24 76.9 18.7 40.06 684 344.00 0 3.5 Japan
25 67.8 35.5 35.64 653 530.00 1 3.83 Japan
26 73.8 36.9 48.70 575 128.09 0 3.08 Japan
27 60.2 36.3 31.13 414 159.00 1 3 Japan
28 56.7 77.1 66.16 697 292.80 1 2.33 Japan
29 59.0 39.3 33.45 1932 1547.00 0 3.42 Japan
30 63.1 34.2 39.83 163 22.00 0 3.58 Japan
31 68.6 35.0 52.35 285 95.00 1 3.75 Japan
32 40.1 71.0 60.02 879 54.83 1 3.5 Japan

Since we have the p-value= 0:010, we can reject the null
hypothesis H0: �1 = �2 at the 95% con6dence level. That is,
there is strong evidence indicating that the mean of estimated
dynamic gain from the companies with ISO 9000 certi6ca-
tion is greater than that of the companies without ISO 9000

certi6cation. McKone et al. [22] report that companies with
strong quality programs should have strong autonomous and
planned maintenance systems. There are several possible ex-
planations for this result. First, TQM and TPM have similar
support systems such as teamwork, skill development, and
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Table 3
The results of the multiple linear regression for (a) Ŷ c, (b) Ŷ f and (c) �̂

Sources df SS MS F p-value

(a) Regression 4 1041.805 260.451 2.934 0.039
Error 27 2396.765 88.769
Total 31 3438.570

R2 = 0:303 adjR2 = 0:200

Coe3. Standard error t-statistic p-value

Intercept 82.085 8.785 9.344 5.97E-10
Size 0.006 0.004 1.441 0.161
Sales −0:007 0.004 −1:764 0.089
ISO 9000 −3:258 3.393 −0:960 0.346
Award year −6:498 2.461 −2:641 0.014

(b) Regression 4 4751.481 1187.870 4.587 0.006
Error 27 6992.125 258.968
Total 31 11743.606

R2 = 0:405 adjR2 = 0:316

Coe3. Standard error t-statistic p-value

Intercept −9:188 15.005 −0:612 0.545
Size −0:001 0.007 −0:104 0.918
Sales −3:89E-04 0.007 −0:055 0.957
ISO 9000 14.513 5.795 2.504 0.019
Award year 13.542 4.203 3.222 0.003

(c) Regression 4 2850.467 712.617 3.011 0.036
Error 27 6390.054 236.669
Total 31 9240.520

R2 = 0:308 adjR2 = 0:206

Coe3. Standard error t-statistic p-value

Intercept 8.976 14.345 0.626 0.537
Size −1:66E-04 0.007 −0:025 0.980
Sales −0:010 0.007 −1:465 0.154
ISO 9000 −0:198 5.540 −0:036 0.972
Award year 11.975 4.018 2.980 0.006

process control. Once the systems are established they can
be used to support both maintenance and quality improve-
ment e3orts. Second, high quality products are a result of
good design, quality raw materials, reliable processes, and
consistent equipment. The maintenance of the equipment is
important to sustain the production of high quality prod-
ucts. As companies continue to improve their quality, they
must also improve their maintenance delivery system and the
overall equipment performance. Finally, some companies
implement TPM programs to establish control of their op-
erating environment. Once equipment performance is man-
aged, companies are able to focus on quality improvement

e3orts. Our results also con6rm that TQM and TPM pro-
grams are closely related based on the OEE’s learning index
performance. Also, since we have the p-value= 0:498 for
the testing of the mean of the parameter �, we cannot reject
the null hypothesis H0: �1 = �2 at the 95% con6dence level.
That is, the mean of estimated time constant from the com-
panies with ISO 9000 certi6cation is not di3erent from the
mean of those without ISO 9000 certi6cation.

Example 4. Using Eq. (7) and the data in Table 2, the re-
sults of the multiple linear regression equation are shown
in Tables 3(a–c). The estimated parameter of Ŷ c; Ŷ f and �̂
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can be obtained as follows:
ˆ̂Y c = 80:085 + 0:006 × size − 0:007 × sales

− 3:258 × ISO − 6:498 × award year;

ˆ̂Yf = −9:188 − 0:001 × size − 3:89 × 10−4 × sales

+14:513 × ISO + 13:542 × award year;

ˆ̂�= 8:976 − 1:66 × 10−4 × size − 0:010 × sales

− 0:198 × ISO + 11:975 × award year;

where size = employees, when the company has ISO 9000
certi6cation then ISO = 1, otherwise ISO = 0, award year
= years from the starting of the TPM program to winning
the TPM award.

The assumptions of normality, homogeneity of variance-
covariance matrices, linearity and multicollinearity are all
satis6ed for the above multiple linear regression models.
We can use the above equations to obtain the estimated
parameters, and then it can be easily used to predicting the
OEE after implementing TPM at a future time t.

5. Conclusion

A random e3ect non-linear regression model called the
Time Constant Model was used to formulate a prediction
model for learning rate in terms of the size of company,
sales, certi6ed as ISO 9000 or not, and number of years
from the starting of the TPM program to the award TPM.
A two-stage analysis was employed to estimate the param-
eters. Using the approach of this study, one can determine
the appropriate time for checking the performance of imple-
menting TPM. Further, comparing the expected OEE, one
can improve the maintenance policy. Our research results
show that TQM and TPM programs are closely related. In
addition, there is no strong evidence indicating that the mean
of estimated learning index from the companies in Taiwan
is di3erent from that in Japan. Also, small plants as well as
large plants can implement TPM and have the same mainte-
nance performance. The approach of this research can help
a company when it starts implementing the TPM program.
The company can use this multiple linear equation to ob-
tain the estimated learning index where the award year can
be treated as the expected TPM award year. Then the ex-
pected OEE can be easily obtained and used to monitor the
maintenance progress.
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